pla

机器学习笔记-回顾几种线性模型

笔记整理自台大林轩田老师的开放课程-机器学习基石,笔记中所有图片来自于课堂讲义。

  前面的笔记介绍了三种线性模型,PLALinear RegressionLogistic Regression。之所以称他们是线性模型,是因为这三种分类模型的方程中,都含有一个相同的部分,该部分是各个特征的一个线性组合,也可以称这个部分叫做线性评分方程:

$$\color{purple}{s}=w^Tx$$

Perceptron Learning Algorithm (PLA)

Perceptron 是什么?


  Perceptron - 感知机,它能够根据每笔资料的特征,把资料判断为不同的类别。令$h(x)$是一个perceptron,你给我一个$x$($x$是一个特征向量),把$x$输入$h(x)$,它就会输出这个$x$的类别,譬如在信用违约风险预测当中,输出就可能是这个人会违约,或者不会违约。本质上讲,perceptron是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1。