Introduction
1.
When Can Machines Learn?
2.
Why Can Machines Learn?
2.1.
机器学习的可行性
2.2.
VC Dimension Part I
2.3.
VC Dimension Part II
2.4.
VC Dimension Part III
2.5.
Noise and Error
3.
How Can Machines Learn?
3.1.
Linear Regression
3.2.
Logistic Regression
3.3.
Linear Models for Classification
4.
How Can Machines Learn Better?
5.
FAQ
Published with GitBook
A
A
Serif
Sans
White
Sepia
Night
Share on Twitter
Share on Google
Share on Facebook
Share on Weibo
Share on Instapaper
机器学习笔记
机器如何学习